由于量子点(Quantum Dots)发光波长范围极窄,颜色非常纯粹,还可实现精细调节,所以量子点显示器画面比液晶画面更加清新明亮。韩国多家研究院最近联合造出了第一个“大屏幕”全彩色量子点显示器,为开发下一代电视机、手机、数字相机和便携式游戏机等带来全新视野。相关研究发表在最近出版的《自然·光子学》上。
量子点是一些肉眼无法看到的、极其微小的半导体纳米晶体,由锌、镉、硒和硫原子组合而成,晶体中的颗粒直径不足10纳米。它有一个与众不同的特性:当受到电或光刺激时就会发光,产生亮光和纯色,发出的光线颜色由量子点的组成材料和大小、形状所决定。
过去10多年来,研究人员一直在研究量子点显示器。所谓“大屏幕”只有4英寸(约10厘米),但生成的场致发光图像的分辨率可达320×240像素。由于增大显示屏会降低画面质量,过去是把量子点喷在基底材料表面作涂层,类似于喷墨打印。这种技术要把量子点溶解在有机溶剂中,会污染显示器,降低色彩亮度和能效。
为克服这一缺点,研究人员找到一种压印的方法,用有图案的硅片造出一种“墨水印章”,然后用“印章”来选取大小合适的量子点,不需要溶剂,就可将它们压在薄膜基片上,平均每平方厘米约分布3万亿个量子点。研究人员说,这听起来容易做起来难,要考虑很多细节,比如为了实现100%的转印,需要改变“印章”的速度和压力。
用这种方法制成的显示器密度和量子一致性都更高,能产生更明亮的画面,能效也比以前更高。研究人员指出,新技术印制量子点显示器是在柔软薄膜上,在可卷曲便携式显示器、柔软发光设备、光电设备等领域该技术都会有广泛应用。(常丽君)
科学网(kexue.com)讯 2月22日消息,随着时代的进步,军事科技业迎来了新的技术革命。近日,科学家研制的世界第一种“反激光器”,它能够完全消除激光束。
科学家最新研制世界第一种“反激光器”,它能够完全消除激光束
据国外媒体报道,反激光器能够俘获入射激光束,并迫使激光束在周围反弹直到激光能量被吸收。该装置并非用于军事领域,目前计算机专家计划利用该装置制造新一代运行速度更快的光学计算机。
不过,该装置能够消除激光束,却并不能吸收包含在激光束中的能量,相反,它能够将激光能量转变为热量,这意味着遭受激光武器攻击的士兵使用该装置后仍会出现严重的身体烧伤。
反激光器能将激光能量转变为热量
反激光器是由美国耶鲁大学工程学院斯通(Douglas Stone)教授研制的,他于去年首次在研究报告中提出反激光器概念。但当时他的同行都对反激光器概念当作儿戏,称这项技术促使激光技术“向后发展”。
据科学网(kexue.com)了解,激光器能够产生相干光,也就是一束具有相同频率、振幅和波形的光子流。研究人员表示,他们已经研制出了相干光全吸收器,它是一块可捕捉和驱散预定 波长相干光的硅晶圆。也就是说,如果一个激光器生成了相干光,那么相干光全吸收器便可完全吸收这些相干光,因而也消除了可能产生热量的光能。
另外,耶鲁大学研究小组认为,这种反激光器以特殊频率运行,当波长发生变化时使该装置“启动和关闭”。理论上,该激光器可99.999%消除激光,但由于该反激光器和硅晶圆的局限性,实际上消除99.4%的激光。
目前。该装置唯一的问题是并不能阻止激光武器带来的损害,斯通教授说:“激光能量将以热量形式驱散。因此,如果某人被激光武器灼伤,该反激光器并不能阻止被灼伤。美国麻省理工学院物理学家马林-索尔贾西(Marin Soljacic)在接受《连线》杂志采访时称,这是一项非常新颖、令人惊奇的装置。
随着新一代计算机着眼于使用光学元件代替电子元件,反激光器能提供至关重要的光学转换,使计算机运行得更快。
(科学网-kexue.com 水离子)
跨入“十二五”门槛,如何探索独具特色的低碳模式?发展低碳经济还有哪些瓶颈制约需要破除?这些成为正处于加快推进工业化、城市化阶段的江苏省不断思考的问题。
据了解,2001~2008年,江苏省万元GDP能耗逐步下降,低于全国水平。但是全省的碳排放量增长较快,二氧化碳排放量年均增长率为11.26%,虽然低于同期18.11%的GDP增长率,但高于我国10.23%的碳排放年均增长率。特别是电力热力的生产和供应业、化学原料及化学制品制造业、非金属矿物质品业、造纸及纸制品业和纺织业、黑色金属冶炼及压延加工业和金属制品业7个行业,其二氧化碳排放量占到所有行业的90%以上。
在巨大的碳排放压力下,江苏省将降低工业碳排放作为首要任务进行“减压”,试图走出一条适应江苏发展的低碳模式。
智能电网如何助力低碳实践?
江南大学教授吴林海目前承担了江苏省社科基金项目“无锡发展低碳经济研究”,他告诉记者,低碳经济主要是指依靠技术创新和政策措施,建立一种较少排放温室气体的经济发展模式,其实质是能源效率和能源结构问题,核心是能源技术创新和制度创新,重点是替代当前的化石能源发展模式,目标是减缓气候变化和促进人类可持续发展。
而江苏缺少能源的省情和以煤为主的能源结构,使经济发展面临更多来自低碳的压力。为此,江苏省电力公司着力在优化能源结构上下功夫,全力推进清洁能源应用;助力重点企业节电降耗,推动全社会节能,促进全省单位GDP能耗不断降低。2010年,江苏省累计节能约200万吨标准煤,减少二氧化硫排放约3.6万吨,总节能效益约16亿元。
为使电力行业走出一套适应江苏省情的低碳模式,江苏省将智能电网列入全省重点发展的六大战略性新兴产业。南京江宁开发区的智能电网产业已先后引进了南瑞继保、国电南自、金智科技、科远股份等60多家企业,成为国内电力自动化产业发展高地。2009年,南京江宁开发区引进总投资超过100亿元的国家电网智能电网科研产业基地项目。
据介绍,智能电网具有安全水平高、适应能力强等优势,能够适应风能、太阳能发电等各类间歇性、随机性能源接入和消纳的需要,能为大规模开发和利用风能、太阳能等清洁能源提供坚强支撑。建设发展智能电网,到2020年,可使全国每年减少煤炭消耗4.7亿吨,减少二氧化碳排放量13.8亿吨,有利于2020年温室气体减排目标实现。
重点行业怎么试水低碳模式?
面对“碳考”,纺织行业也感到压力巨大。无锡纺织行业找准方向,早做功课,在提高能效上下功夫,获得了试水“低碳”的成功。
无锡市纺织行业通过投入资金、改造设备和创新技术等举措推进节能和提高能效,走低碳发展之路。无锡市在印染行业集中推介一批节能新技术,如大染整机等设备上安装变频器可节电20%,推广绿色照明技术及办公场所采用节能光源,可节电50%等,促进高效节能。宜兴乐祺集团实施1500KW差压发电技改重点项目,每小时耗气量仅100吨,对耗能设备实行差压电的节能改造,接通后并网发电,年发电量970万度,节煤1200吨,并能获益500多万元。
同时,纺织企业采用短流程无污染的环保型染料助剂,采用先进的印花技术,并通过复合技术工艺,使印染后整理工艺流程更短、碳排放更少、生产效率更高,产品性能更好,从而提高产品附加值,大幅改善企业生产加工环境,符合国际低碳发展的潮流。江苏霞客环保色纺股份有限公司在国内首个采用在线添加熔体直纺工艺,原液着色技术和无水印染,达到从投入到产出整个工艺过程无污染,从根本上规避了纺织产品产业链中污染最严重的印染环节,实现污染零排放。
还有一些纺织企业抓住减碳机遇适时转型,发展太阳能、风电等新能源,通过引进嫁接,产学研合作培育能源环保产业,形成新的经济增长点,走出一条独具特色的产业转型之路。无锡前洲印染厂在节能减排压力之下,转投技术含量高,无污染、用工少的太阳能光伏产业,投资1亿元,引进国外先进设备和技术,招纳国内外30多名博士、研究生,成立尚品太阳能公司,开发生产太阳能电池,迎来了转机,除生产过程无污染外,现在企业用工已从原来的500人减少到200人,年销售收入从原来的8000万元提高到10亿元,不仅推动清洁能源的应用,更带动传统产业转型升级。
工业降碳有哪些路径?
如何才能突破瓶颈降低工业碳排放?吴林海在调查分析江苏省二氧化碳排放,尤其是工业碳排放后,提出了3条可行路径。
一是坚持把高耗能行业作为工业结构调整重点,构筑低碳经济的产业基础。据统计,黑色金属冶炼及压延加工业、化学原料及化学制品制造业、非金属矿物制品业、电力热力生产和供应业、纺织业,是全省规模以上工业前5位的高耗能行业,约占规模以上工业能源消耗的70%左右。对高耗能行业继续实施“关、停、并、转”,强化清洁生产与循环经济等技术改造。配合国家“863”计划,把碳捕获和存储技术作为国际合作的突破口,展开深层次国际合作,率先突破碳排放最大行业的技术瓶颈。
二是发挥政府主导作用,加快新技术研发与推广,构建低碳经济的技术支撑。据调研,50%的企业需要政府帮助提供碳减排新技术,按照“优势互补、层级相配”的原则,政府带头组建以大企业集团为主体,高校、科研机构参与的科研攻关组织,研发急需的碳减排共性技术和前瞻性技术。江苏省科技计划专项应重点支持清洁生产新技术的研发。政府采取后资助方式优先支持具有产业化雏形、能够推广的共性技术项目,培育一批研发高端人才,不断完善项目与人才相结合的支持方式。
三是强化政策激励,为低碳经济提供制度保障。据调查,97.5%的样本企业表示政府对于低碳生产的作用很重要,希望政府出台激励政策,建议将目前省级财政设立的节能减排专项资金,拓展为低碳经济专项引导资金,支持企业节能降耗、清洁生产与低碳技术研发。目前国家即将开展碳排放交易试点,江苏省要抓住机会积极争取国家更多的试点,探索财政直补、实施差别化程度更高的电价政策等形式降低碳排放。(中国环境报记者 闫艳 高杰 见习记者 李莉 范圣楠)
人类对氢能源的实际应用可以追溯到200年前。氢储量丰富、易于获得,是理想的能源载体。氢燃料优点很多,其一是实现二氧化碳零排放。这一特点 使氢燃料显得尤为抢眼。然而如何以低廉的成本生产出大量氢气,是一个处于讨论中的问题。这里提出一个改造现有天然气电厂的设想,或许可以为氢能源的生产增 添一些启示。
氢经济时代
自20世纪90年代中期起,许多问题集中出现,如城市空气污染日益严重、低排放或零排放车辆的需求持续增加、全球气候变暖加快等等。同时,伴随着日渐高涨的全球能源紧缺呼声,许多国家都开始实施能源多样化战略,加大新能源研发力度,探索代替化石燃料的 能源 技术。
在各种新能源中,氢能源被认为最有可能大量投入实际使用。许多国家都展开对氢能的开发利用。美国、日本等国都大力发展本国氢燃料电池及氢的制造、运输、储存技术。
氢气生产方法不同,其投资额和边际成本也不一样。制氢的能源和燃料也有多种来源, 能源有天然气、核能、太阳能、风力等,燃料有生物燃料、煤炭等。统计数据表明,煤炭制氢最便宜,但这一方法产生的高污染又会使氢气科技的环保性荡然无存。 天然气制氢很好地摆脱了这一问题,想要开启氢经济时代,首先就要寻找出经济实惠的大量生产天然气的方法。长期以来,这一问题一直阻碍着人类社会迈入一个低 碳氢燃料时代。
从现有天然气电厂“抽”氢
荷兰及法国的一些化学家指出,建造花费巨大的新工厂不切实际,改造已有天然气发电厂更加现实。但是有批评指出,将现有天然气发电厂进行翻新,可能会使效率低下。不过要想逾越通向氢时代的障碍,目前也只能采用现有的化石燃料技术。
尽管将氢转化为能量所需的廉价燃料电池及其他技术都已相当成熟,但是目前还未找到大量生产氢的方法。荷兰阿姆斯特丹大学的加蒂.罗腾博格团队与 其法国里昂大学的同事认为,由于 能源 市场相对保守,只有使用现有矿物燃料基础设施才比较实际,并且有成功的可能。他们开发了一种催化剂,可以模仿沼气发电厂的燃料室,在燃烧室里分解甲烷、产 生氢气。这一方法对现有发电厂的改动很小。
焦炭沉淀物问题
对于到底应该使用哪种催化剂,研究者尝试铈的氧化物以及镍催化剂,将甲烷和氧气的混合气体加热至400摄氏度至500摄氏度,来模拟发电厂的情 形。最开始,甲烷燃烧消耗所有氧气并产生热量。接着,在催化剂及热量作用下,剩余沼气分解成固态碳和氢气。两个甲烷分子的8个氢原子可以产生大约2个氢气 分子——使用这一方法氢气的实际产生率约为25%~30%。
在发电厂内产生的部分热量会像平常一样用于发电,这样可以利用浪费的能量,提高效能。
实验显示,催化剂在被固态炭堵塞前,可以连续有效工作7小时。据研究小组的久瑞安.贝克尔斯介绍,即使催化剂被堵住,也很好清理,因为这些焦炭 沉淀物很容易燃烧。他还说:“改变在燃烧室内的混合气体,也是减少焦炭沉淀物的有效方法。”但他补充说,研究人员不确定是否能在真正的天然气发电厂内,实 现这样的控制水平。
生产氢气能耗高
哈里斯指出,全世界95%的氢气都是从天然气中获取的,使用的正是化石燃料转化炉。在转化炉中,天然气与蒸汽反应产生氢气和二氧化碳。这一过程实际产生氢气的效率大约为65%~70%。他说,在找到生产氢气的可再生资源之前,这一效率已经够用。
但瑞士联邦科技学院的阿尔多.史丹菲尔德却持不同意见。他指出,要产生需要的蒸汽,必定要消耗一定的燃料。相比而言,天然气发电厂从天然气中获取能量的效率更高。他还说:“因为生产氢气是一个高耗能过程,因此在转炉中用甲烷生产氢气,每千瓦时产生的二氧化碳量更多。”
太阳能解决方案
史丹菲尔德的研究建议将注意力集中在太阳能上,因为太阳能可以提供热量来分解甲烷并生产氢气。他说:“通过这些复杂的过程,我们‘混合’太阳能 及化石燃料产生的能量,将现有的以化石燃料为基础的技术与未来的太阳能化学技术联系起来。这样能节省化石燃料,减少二氧化碳排放,并且能为太阳能生产氢气 铺路搭桥。”
不过,这一设想同许多其他提议一样还只处于理论阶段。展望未来,如果能够找到大量可持续生产氢的方法,或许可以开启一个崭新的氢经济时代。(蜘蛛侠)
“阿格斯II型”让失明20年的塞尔比重见光明
去年,这家名为“第二视觉”的公司把这种叫做“阿格斯II型”的人造装置植入68岁英国退休工程师埃里克•塞尔比的右眼。塞尔比失明近20年,一直依靠导盲犬外出。手术后,他可以“看到”人行道等易辨识的物体。
据介绍,这套装置还包括安装在眼镜上的微型摄像机、无线发射器和一台单独的微型无线计算机。首先,眼镜上的摄像机捕捉到外部景象,然后这些经过计算机处理的图像再经由无线发射器传送到植在患者眼球表面的人造视网膜上,并转换为电脉冲信号;接着,人造视网膜上的电极会刺激视网膜的视觉神经,继续将信号沿视神经传送到大脑。
发明者称,这些脉冲信号可以“欺骗”大脑,让大脑以为患者的眼睛仍然在正常工作。最终,患者可以和常人一样“看到”外部世界,并区分光明和黑暗,从而恢复视力。不过,安装“阿格斯II型”的盲人需要经过培训才能更好地识别眼前物体,因为他们看到的只是物体的大致轮廓。譬如,如果看到三个点,则可能意味着他们眼前的东西是三角形。即便如此,塞尔比还是对恢复部分视力感到很开心,他说:“虽然只是一些光束,还需要用脑子分辨它们是什么。但是能看到东西已经让我非常惊奇和高兴了。”
目前,“阿格斯II型”的市场定价为10万美元,颇为昂贵,不过已有包括荷兰在内的多个欧洲国家正在考虑是否要引进并推广该产品。如果获得相关部门批准,荷兰将是第一个销售这种人造视网膜的国家。然而医生表示,此种技术只适用于因色素性视网膜炎致盲的病人,因为他们并非先天的盲人,之前能看见东西,还残存有健康的视网膜细胞和视神经。
相关阅读:
一种非植入式装置依靠病人舌头表面的神经把光信号传输到大脑里去,帮助视觉受损的病人重“见”大千世界,这种设备可能在2009 年底获准上市,每台售价约为1万美元。
人类对氢能源的实际应用可以追溯到200年前。氢储量丰富、易于获得,是理想的能源载体。氢燃料优点很多,其一是实现二氧化碳零排放。这一特点使氢燃料显得尤为抢眼。然而如何以低廉的成本生产出大量氢气,是一个处于讨论中的问题。这里提出一个改造现有天然气电厂的设想,或许可以为氢能源的生产增添一些启示。
氢经济时代
自20世纪90年代中期起,许多问题集中出现,如城市空气污染日益严重、低排放或零排放车辆的需求持续增加、全球气候变暖加快等等。同时,伴随着日渐高涨的全球能源紧缺呼声,许多国家都开始实施能源多样化战略,加大新能源研发力度,探索代替化石燃料的 能源 技术。
在各种新能源中,氢能源被认为最有可能大量投入实际使用。许多国家都展开对氢能的开发利用。美国、日本等国都大力发展本国氢燃料电池及氢的制造、运输、储存技术。
氢气生产方法不同,其投资额和边际成本也不一样。制氢的能源和燃料也有多种来源, 能源有天然气、核能、太阳能、风力等,燃料有生物燃料、煤炭等。统计数据表明,煤炭制氢最便宜,但这一方法产生的高污染又会使氢气科技的环保性荡然无存。天然气制氢很好地摆脱了这一问题,想要开启氢经济时代,首先就要寻找出经济实惠的大量生产天然气的方法。长期以来,这一问题一直阻碍着人类社会迈入一个低碳氢燃料时代。
从现有天然气电厂“抽”氢
荷兰及法国的一些化学家指出,建造花费巨大的新工厂不切实际,改造已有天然气发电厂更加现实。但是有批评指出,将现有天然气发电厂进行翻新,可能会使效率低下。不过要想逾越通向氢时代的障碍,目前也只能采用现有的化石燃料技术。
尽管将氢转化为能量所需的廉价燃料电池及其他技术都已相当成熟,但是目前还未找到大量生产氢的方法。荷兰阿姆斯特丹大学的加蒂.罗腾博格团队与其法国里昂大学的同事认为,由于 能源 市场相对保守,只有使用现有矿物燃料基础设施才比较实际,并且有成功的可能。他们开发了一种催化剂,可以模仿沼气发电厂的燃料室,在燃烧室里分解甲烷、产生氢气。这一方法对现有发电厂的改动很小。
焦炭沉淀物问题
对于到底应该使用哪种催化剂,研究者尝试铈的氧化物以及镍催化剂,将甲烷和氧气的混合气体加热至400摄氏度至500摄氏度,来模拟发电厂的情形。最开始,甲烷燃烧消耗所有氧气并产生热量。接着,在催化剂及热量作用下,剩余沼气分解成固态碳和氢气。两个甲烷分子的8个氢原子可以产生大约2个氢气分子——使用这一方法氢气的实际产生率约为25%~30%。
在发电厂内产生的部分热量会像平常一样用于发电,这样可以利用浪费的能量,提高效能。
实验显示,催化剂在被固态炭堵塞前,可以连续有效工作7小时。据研究小组的久瑞安.贝克尔斯介绍,即使催化剂被堵住,也很好清理,因为这些焦炭沉淀物很容易燃烧。他还说:“改变在燃烧室内的混合气体,也是减少焦炭沉淀物的有效方法。”但他补充说,研究人员不确定是否能在真正的天然气发电厂内,实现这样的控制水平。
生产氢气能耗高
哈里斯指出,全世界95%的氢气都是从天然气中获取的,使用的正是化石燃料转化炉。在转化炉中,天然气与蒸汽反应产生氢气和二氧化碳。这一过程实际产生氢气的效率大约为65%~70%。他说,在找到生产氢气的可再生资源之前,这一效率已经够用。
但瑞士联邦科技学院的阿尔多.史丹菲尔德却持不同意见。他指出,要产生需要的蒸汽,必定要消耗一定的燃料。相比而言,天然气发电厂从天然气中获取能量的效率更高。他还说:“因为生产氢气是一个高耗能过程,因此在转炉中用甲烷生产氢气,每千瓦时产生的二氧化碳量更多。”
太阳能解决方案
史丹菲尔德的研究建议将注意力集中在太阳能上,因为太阳能可以提供热量来分解甲烷并生产氢气。他说:“通过这些复杂的过程,我们‘混合’太阳能及化石燃料产生的能量,将现有的以化石燃料为基础的技术与未来的太阳能化学技术联系起来。这样能节省化石燃料,减少二氧化碳排放,并且能为太阳能生产氢气铺路搭桥。”
不过,这一设想同许多其他提议一样还只处于理论阶段。展望未来,如果能够找到大量可持续生产氢的方法,或许可以开启一个崭新的氢经济时代。(科学网-kexue.com 蜘蛛侠)
美国加利福尼亚大学伯克利分校科学家利用新技术直接在硅表面生长出了极微小的纳米柱,形成一种亚波长激光器,这一成果将为制造纳米光学设备如激光器、光源检测仪、调制器、太阳能电池等带来新的突破。
硅材料奠定了现代电子学的基础,但它在发光领域还有很多不足之处。工程人员转向了另外一族名为III-V半导体的新材料,以此来制造光基元件,如发光二极管和激光器。
加利福尼亚大学伯克利分校的研究人员通过金属—有机化学蒸发沉积的方法,在400摄氏度条件下,用一种III-V族材料铟镓砷在硅表面生长出纳米柱。 这种纳米柱有着独特的六角形晶体结构,能将光线控制在它微小的管中,形成一种高效导控光腔。它能在室温下产生波长约950纳米的近红外激光,光线在其中以 螺旋形式上下传播,经过光学上的相互作用而得以放大。
研究人员指出,将III-V和硅结合制成单一的光电子芯片面临的最大障碍是,目前制造硅基材料的工业生产设备无法与制造III-V设备兼容。“要让 III-V半导体在硅表面上生长,与硅制造设备兼容是关键,但由于经济和技术方面的原因,目前的硅电子生产设施很难改变。我们选用了一种能和CMOS(互 补金属氧化半导体,用于制造集成线路)兼容的生长工艺,在硅芯片上成功整合了III-V纳米激光器。传统方法生长III-V半导体,要在700摄氏度或更 高温度下进行,这会毁坏硅基电子元件。而新工艺在400摄氏度下就能生长出高质量III-V材料,保证了硅基电子元件正常发挥功能。”主要研究人员、加州 大学伯克利分校电学工程与计算机科学教授康妮·张-哈斯南说。
张-哈斯南还指出,这种亚波长激光器技术将对多科学领域产生广泛影响,包括材料科学、晶体管技术、激光科学、光电子学和光物理学,促进计算机、通讯、 展示和光信号处理等领域光电子学的革命。“最终,我们希望加强这些激光的特征性能,以实现光子和电子设备的结合。”(常丽君)
中国网2月15日讯 从2011年起高校招生将新增140个新专业,全部为国家确定的战略性新兴产业相关本科专业。其中在京高校新增专业16个,占全国高校新增专业的一成多。
教育部关于公布同意设置的高等学校战略性
新兴产业相关本科新专业名单的通知
各省、自治区、直辖市教育厅(教委),新疆生产建设兵团教育局,有关部门(单位)教育司(局),部属各高等学校:
各有关部门(学校)按照《教育部办公厅关于战略性新兴产业相关专业申报和审批工作的通知》(教高厅函〔2010〕13号)精神,申请增设相关专业的请示收悉。根据《国务院对确需保留的行政审批项目设定行政许可的决定》(国务院令第412号)、《高等学校本科专业设置规定》、《教育部办公厅关于进一步加强和改进高等学校本科专业备案和审批管理工作的通知》等有关文件精神,以及战略性新兴产业相关专业教指委专家评审会议和教育部学科发展与专业设置专家委员会特别会议的评议意见,经研究,现公布同意设置的高等学校战略性新兴产业相关本科新专业名单。
本次公布的高校新设置的140个本科专业(见附件),自2011年开始招生,其专业名称、专业代码、修业年限、学位授予门类等均以公布的内容为准。2010年需按新设置专业开展培养工作的高校,可通过从本校2010年招收的其他专业的学生或本科二年级的在校生中通过转专业的方式转入所批准的专业学习。
望各有关部门(学校)充分利用高校现有的办学条件,加强新增专业建设,切实保证教育质量,为国家战略性新兴产业发展所需高素质专门人才的培养做出新的更大贡献。
2011年教育部同意设置的相关本科新专业名单
序号
主管部门、学校名称
专业代码
专业名称
修业 年限
学位授 予门类
工业和信息化部
1
北京航空航天大学
080216S
纳米材料与技术
四年
工学
2
北京理工大学
080640S
物联网工程
四年
工学
3
北京理工大学
081106S
能源化学工程
四年
工学
4
哈尔滨工业大学
080640S
物联网工程
四年
工学
5
哈尔滨工业大学
080643S
光电子材料与器件
四年
工学
6
哈尔滨工业大学
081106S
能源化学工程
四年
工学
7
哈尔滨工程大学
080640S
物联网工程
四年
工学
8
哈尔滨工程大学
080643S
光电子材料与器件
四年
工学
9
哈尔滨工程大学
080644S
水声工程
四年
工学
10
南京航空航天大学
080640S
物联网工程
四年
工学
11
南京理工大学
080216S
纳米材料与技术
四年
工学
12
南京理工大学
080512S
新能源科学与工程
四年
工学
13
西北工业大学
080640S
物联网工程
四年
工学
14
西北工业大学
080644S
水声工程
四年
工学
交通运输部
15
大连海事大学
080641S
传感网技术
四年
工学
教育部
16
中国人民大学
020121S
能源经济
四年
经济学
17
北京科技大学
080216S
纳米材料与技术
四年
工学
18
北京科技大学
080640S
物联网工程
四年
工学
19
北京化工大学
081106S
能源化学工程
四年
工学
20
北京邮电大学
080640S
物联网工程
四年
工学
21
中国传媒大学
050307S
新媒体与信息网络
四年
文学
22
华北电力大学
080217S
新能源材料与器件
四年
工学
23
华北电力大学
080512S
新能源科学与工程
四年
工学
24
华北电力大学
080645S
智能电网信息工程
四年
工学
25
华北电力大学
081106S
能源化学工程
四年
工学
26
中国石油大学(北京)
081106S
能源化学工程
四年
工学
27
南开大学
080218S
资源循环科学与工程
四年
工学
28
天津大学
080215S
功能材料
四年
工学
29
天津大学
080640S
物联网工程
四年
工学
30
天津大学
080642S
微电子材料与器件
四年
工学
31
大连理工大学
080215S
功能材料
四年
工学
32
大连理工大学
080216S
纳米材料与技术
四年
工学
注:专业代码加有“S”者为在少数高校试点的目录外专业。
33
大连理工大学
080640S
物联网工程
四年
工学
34
大连理工大学
080641S
传感网技术
四年
工学
35
大连理工大学
081106S
能源化学工程
四年
工学
36
大连理工大学
081303S
海洋资源开发技术
四年
工学
37
东北大学
080215S
功能材料
四年
工学
38
东北大学
080218S
资源循环科学与工程
四年
工学
39
东北大学
080512S
新能源科学与工程
四年
工学
40
东北大学
080640S
物联网工程
四年
工学
41
吉林大学
080640S
物联网工程
四年
工学
42
华东理工大学
080217S
新能源材料与器件
四年
工学
43
华东理工大学
080218S
资源循环科学与工程
四年
工学
44
东华大学
080215S
功能材料
四年
工学
45
东南大学
080217S
新能源材料与器件
四年
工学
46
东南大学
080641S
传感网技术
四年
工学
47
中国矿业大学
081106S
能源化学工程
四年
工学
48
河海大学
080512S
新能源科学与工程
四年
工学
49
河海大学
080640S
物联网工程
四年
工学
50
江南大学
080640S
物联网工程
四年
工学
51
中国药科大学
081107S
生物制药
四年
工学
52
中国药科大学
100812S
药物分析
四年
理学
53
中国药科大学
100813S
药物化学
四年
理学
54
浙江大学
080512S
新能源科学与工程
四年
工学
55
浙江大学
081302S
海洋工程与技术
四年
工学
56
合肥工业大学
080217S
新能源材料与器件
四年
工学
57
合肥工业大学
080640S
物联网工程
四年
工学
58
山东大学
080218S
资源循环科学与工程
四年
工学
59
山东大学
080640S
物联网工程
四年
工学
60
中国海洋大学
081303S
海洋资源开发技术
四年
工学
61
中国石油大学(华东)
081009S
环保设备工程
四年
工学
62
武汉大学
080640S
物联网工程
四年
工学
63
武汉大学
081107S
生物制药
四年
理学
64
华中科技大学
080215S
功能材料
四年
工学
65
华中科技大学
080512S
新能源科学与工程
四年
工学
66
华中科技大学
080640S
物联网工程
四年
工学
67
华中科技大学
080643S
光电子材料与器件
四年
工学
68
华中科技大学
081107S
生物制药
四年
工学
69
武汉理工大学
080640S
物联网工程
四年
工学
70
武汉理工大学
080716S
建筑节能技术与工程
四年
工学
71
湖南大学
080640S
物联网工程
四年
工学
72
湖南大学
080716S
建筑节能技术与工程
四年
工学
73
中南大学
080217S
新能源材料与器件
四年
工学
74
中南大学
080512S
新能源科学与工程
四年
工学
75
中南大学
080640S
物联网工程
四年
工学
76
重庆大学
080512S
新能源科学与工程
四年
工学
77
重庆大学
080640S
物联网工程
四年
工学
78
西南交通大学
080640S
物联网工程
四年
工学
79
电子科技大学
080217S
新能源材料与器件
四年
工学
80
电子科技大学
080640S
物联网工程
四年
工学
81
电子科技大学
080641S
传感网技术
四年
工学
82
四川大学
080217S
新能源材料与器件
四年
工学
83
四川大学
080640S
物联网工程
四年
工学
84
四川大学
080642S
微电子材料与器件
四年
工学
85
西安交通大学
080512S
新能源科学与工程
四年
工学
86
西安交通大学
080640S
物联网工程
四年
工学
87
兰州大学
080215S
功能材料
四年
工学
国务院侨务办公室
88
华侨大学
080215S
功能材料
四年
工学
北京市
89
北京工业大学
080218S
资源循环科学与工程
四年
工学
90
北京电影学院
050432S
数字电影技术
四年
文学
天津市
91
天津理工大学
080215S
功能材料
四年
工学
92
天津中医药大学
100814S
中药制药
四年
理学
河北省
93
河北工业大学
080215S
功能材料
四年
工学
94
石家庄铁道大学
080215S
功能材料
四年
工学
山西省
95
太原理工大学
080640S
物联网工程
四年
工学
96
山西医科大学
081107S
生物制药
四年
理学
辽宁省
97
沈阳工业大学
080215S
功能材料
四年
工学
98
沈阳建筑大学
080215S
功能材料
四年
工学
99
沈阳建筑大学
080716S
建筑节能技术与工程
四年
工学
吉林省
100
长春理工大学
080217S
新能源材料与器件
四年
工学
101
长春理工大学
080643S
光电子材料与器件
四年
工学
102
长春工业大学
080218S
资源循环科学与工程
四年
工学
黑龙江省
103
东北石油大学
080111S
海洋油气工程
四年
工学
104
东北石油大学
081106S
能源化学工程
四年
工学
105
哈尔滨理工大学
080641S
传感网技术
四年
工学
上海市
106
上海理工大学
080512S
新能源科学与工程
四年
工学
江苏省
107
苏州大学
080216S
纳米材料与技术
四年
工学
108
苏州大学
080217S
新能源材料与器件
四年
工学
109
苏州大学
080640S
物联网工程
四年
工学
110
南京工业大学
080643S
光电子材料与器件
四年
工学
111
南京工业大学
080716S
建筑节能技术与工程
四年
工学
112
南京邮电大学
080645S
智能电网信息工程
四年
工学
113
江苏大学
080512S
新能源科学与工程
四年
工学
114
江苏大学
080640S
物联网工程
四年
工学
115
南京中医药大学
081107S
生物制药
四年
理学
116
南京师范大学
081303S
海洋资源开发技术
四年
理学
安徽省
117
安徽大学
080217S
新能源材料与器件
四年
工学
福建省
118
福建师范大学
080218S
资源循环科学与工程
四年
工学
江西省
119
江西中医学院
100814S
中药制药
四年
理学
120
南昌大学
080217S
新能源材料与器件
四年
工学
121
南昌大学
080716S
建筑节能技术与工程
四年
工学
山东省
122
山东科技大学
080640S
物联网工程
四年
工学
123
山东理工大学
080218S
资源循环科学与工程
四年
工学
湖南省
124
湘潭大学
080217S
新能源材料与器件
四年
工学
125
湘潭大学
081009S
环保设备工程
四年
工学
126
湖南师范大学
080218S
资源循环科学与工程
四年
工学
127
南华大学
081008S
核安全工程
四年
工学
广东省
128
广州中医药大学
100814S
中药制药
四年
理学
129
华南师范大学
080217S
新能源材料与器件
四年
工学
四川省
130
西南石油大学
080111S
海洋油气工程
四年
工学
131
西南石油大学
080217S
新能源材料与器件
四年
工学
132
成都理工大学
080217S
新能源材料与器件
四年
工学
云南省
133
昆明理工大学
080215S
功能材料
四年
工学
陕西省
134
西北大学
080640S
物联网工程
四年
工学
135
西北大学
081106S
能源化学工程
四年
工学
136
西安建筑科技大学
080215S
功能材料
四年
工学
137
西安建筑科技大学
080218S
资源循环科学与工程
四年
工学
138
西安石油大学
080111S
海洋油气工程
四年
工学
甘肃省
139
兰州理工大学
080215S
功能材料
四年
工学
新疆维吾尔自治区
140
新疆大学
081106S
能源化学工程
四年
工学
(本文来源:中国网 )